Abiotic transformation developments: pre-hapten activation and consumer products

David W Roberts

IDEA Workshop 16-17th June 2015

Pro- and pre- and propre or prepro haptens

Basically 3 –types

1. Metabolised to reactive hapten – non-variable potency Pro

2. Abiotically converted to reactive hapten – non-variable potency Pre

3. Abiotically converted to reactive hapten – variable potency Pre

Some chemicals can be both 1 and 3 (eg cinnamic alcohol)

Collaboration with RIFM and LMC

Defining structural alerts for pro-, pre-, and propre

Mechanistic modelling of potency:

- SAR

QMM (quantitative mechanistic modelling)

Chemical types

Hydroperoxides

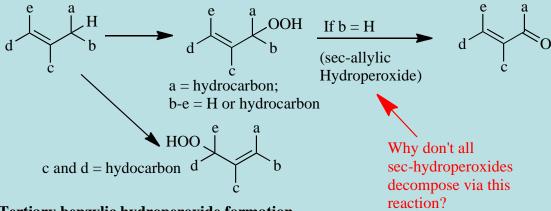
From Pre- but not pro-

Aliphatic amines

Pre- or Pro-?

Aldehydes and ketones Direct and from Pre- and Pro-

Epoxides

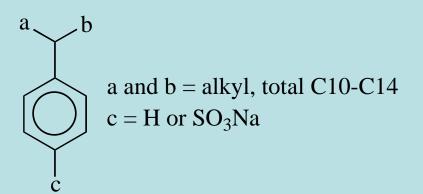

Direct and from Pre- and Pro-

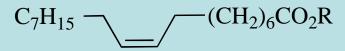
Quinone(-like)

Pre- and/or Pro- and/or Pre+Pro

Hydroperoxide alerts

Secondary and tertiary allylic hydroperoxide formation


Tertiary benzylic hydroperoxide formation


e.g. cumene hydroperoxide, a = b = Me; c = p-Me; d-g = H

a an b = alkyl; c-g = H or any group

Ether hydroperoxides

Some alert failures

R = H, + in LLNA, - in GPMT

R = Me, biodiesel

R = glyceryl, olive oil

Hydroperoxide questions

Structure-potency relationships?

Structure-stability relationships

Pro-hapten structure-oxidation chemistry relationships

Reaction chemistry with self (dimerisation) and other olefinic compounds

Can they sensitize by a non-specific "virtual hapten" pathway? Whereby a tryptophan side group rearranges and transfers to a lysine unit:

Natsch et al, *Chem. Res. Toxicol.*, 2015, 28 (6), 1205–1208, based on Karlsson et al, Chem. Res. Toxicol. 2014, 27, 1294–1303

Alcohol oxidation to aldehydes/ketones

Applies to allylic and propargylic OH groups

Not to saturated alcohols

Benzylic alcohols – probably occurs, but many aromatic aldehydes are weak/NS

Would ortho-HOCH₂C₆H₄OH sensitize as a pro-atranol-type?

Competing activation pathways in some cases

Pre- and pro- mechanisms not mutually exclusive

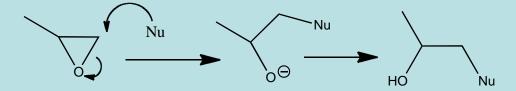
Comparing EC3 values of cinnamic aldehyde (EC3 = 0.75%) with cinnamic alcohol containing ca 2% (by DPRA) cinnammic aldehyde (EC3 of sample = 22%), about 1% gets oxidised by the pre-hapten route

Aliphatic amines

In many cases can be predicted from reactivity of resulting aldehyde or ketone and logP of parent amine:

 $CH-N \rightarrow C=O$ (cf amino acid metabolism)

Pre- or pro- or both?


Exclusion rule: CH₃-N is not a precursor for CH₂O.

Epoxides

- Common as intermediate metabolites in eg liver
- Less common in skin (benz[a]pyrene is one example).
- Shown to be formed from pro-hapten α,β -unsat alcohols and aldehydes
- Also from conjugated dienes with at least one of the double bonds in a ring
- Involved in unsaturated oxime sensitisation probably via nitroso-tautomers

Bergstrom et al. Chem. Res. Toxicol., 2007, 20 (6), 927-936

Epoxides – SAR principles for potency

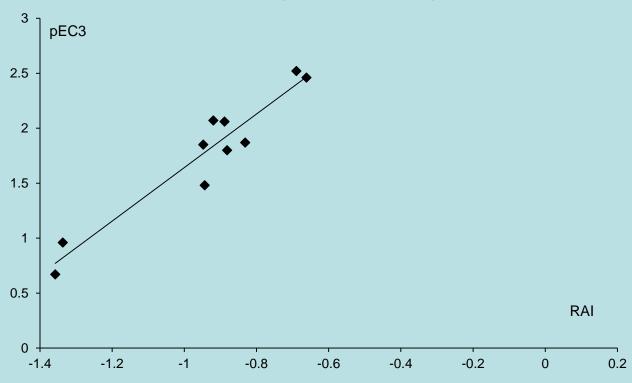
Epoxides are S_N 2 electrophiles (maybe some S_N 1)

Same chemistry principles apply as for other S_N^2 electrophiles:

- 1. Primary more reactive than secondary
- 2. Allylic (and heteroallylic) and benzylic more reactive than saturated
- 3. Electronegative groups that stabilise negative charge on O increase reactivity
- 4. Neighbouring group effects can increase reactivity

Sensitisation potency should depend on a combination of reactivity and hydrophobicity

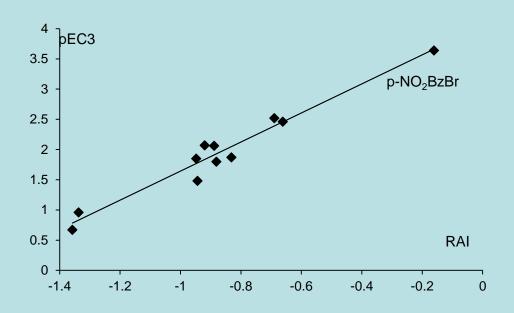
Epoxides (mainly glycidyl)


Reactivity to H-Pro-His-Cys-Lys-Arg-Met-OH (Niklasson et al. Chem. Res. Toxicol. 2009, 22, 1787–1794)

R	Logk	LogP	RAI	EC3
O				
PhOCH ₂	-1.31	1.62	-0.66	0.46
PhCH ₂ OCH ₂	-1.54	1.64	-0.88	2.5
PhOCH ₂ CH ₂	-1.62	1.97	-0.83	2.3
c-HexylOCH ₂	-1.62	1.69	-0.94	5.2
PhCH ₂ CH ₂ OCH ₂	-1.62	1.75	-0.92	1.5
$BuOCH_2$	-1.85	1.24	-1.36	28
CH ₃ CH=CHCH ₂ OCH ₂	-1.72	0.96	-1.34	14
PhSCH ₂	-1.54	2.12	-0.69	0.5
PhCH ₂ CH ₂	-1.82	2.19	-0.95	2.1
PhNHCH ₂	-1.41	1.3	-0.89	1.3

RAI = log k + 0.4 log P

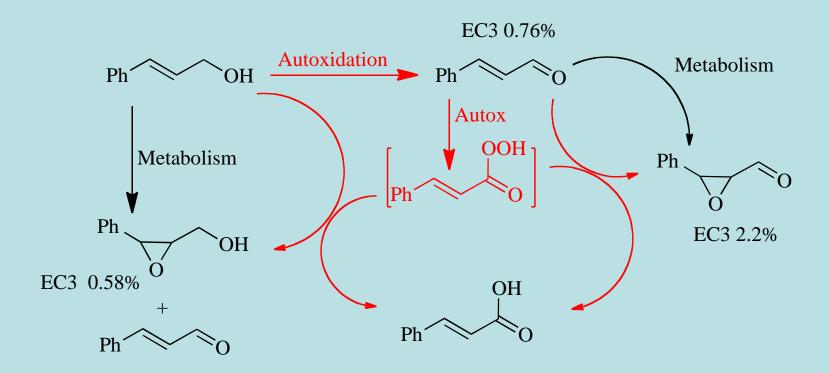
Epoxides – S_N2 domain


$$RAI = log k + 0.4 log P$$

 $pEC3 = 2.44RAI + 4.08; R^2 = 0.9163$

Prediction for p-nitrobenzylbromide, EC3 = 0.44 (observed 0.05)

Epoxides with p-NO₂BzBr



pEC3 = 2.41RAI + 4.05; $R^2 = 0.9579$ (2.44RAI + 4.08 without p-NO₂BzBr)

Geraniol, geranial, and their epoxides

Delaine et al. Chem. Res. Toxicol. 2014, 27, 1860-1870

Cinnamic alcohol – prepro-hapten

Niklasson, I. B., Ponting, D. J., Luthman, K., and Karlberg, A.-T. (2014) Bioactivation of cinnamic alcohol forms several strong skin sensitizers. Chem. Res. Toxicol. 27, 568–575.

Conclusions

What don't we know enough about?

Hydroperoxide chemistry: structure-stability; structure-potency

Relative potency of monomer H-peroxide, dimers, (trimers)? Similar addition of hydroperoxides to other olefins? Potency of H-peroxide/parent adduct? $k_{\rm rel}$ and K for addition of H-peroxide to itself, parent, other olefins?

Main area of uncertainty

Complex aromatics (complex means >2 groups, at least one not H-carbon)

A thought experiment: suppose these were new compounds:

- Differences between types of pre-/pro and frequent uncertainty about which applies
- Basically 3 –types
- 1. Metabolised to reactive hapten has a non-variable potency Pro
- 2. Abiotically converted to reactive hapten has a non-variable potency
- 3. Abiotically converted to reactive hapten variable potency Pre
- 1 and 2 cannot always be distinguished
- 1 and 3 can sometimes both apply (eg cinnamic alcohol)
- Hydroperoxides from hydrocarbons confident pre-hapten mechanism
- Rules for tendency to form allylic or benzylic tertiary and secondary C-H (no primary known)
- Why don't all secondaries decompose immediately?
- LAB and LAS examples where the rules fail
- General hydroperoxide sensitization (Natsch et al) by "negative hapten"
- Implications sensitization by any one hydroperoxide produces sensitivity to all. Potency in sensitization and elicitation is additive.
- Epoxides common as intermediate metabolites in eg liver, less common in skin (benz[a]pyrene is one example). Shown as pro-haptens from a,b-unsat alcohols and aldehydes
- Epoxides "rules" for formation,
- Rules for potency: SN2 electrophiles, same chemistry principles apply as for other SN2. QMMfor datset including 4-NO2BzX
- Epoxides involved in oxime sensitization via nitroso-tautomers?

Aromatic di-NH2 (PPD and related) and di-OH (eg hydroquinone)

Are they pro- or fast activated steady state pre?

Aliphatic amines – in many cases can be predicted from reactivity of resulting aldehyde and logP of parent amine. Exclusion rule – CH3-N is not a precursor for CH2O.

Comparing H-quinone with BQ, assuming HQ acts by conversion to BQ, estimate that ca 10% of the HQ gets activated to BQ in LLNA (show calc)

Allylic OH to a,b-unsat aldehyde (eg ci=nnam. Alc) Evidence for both pre- (variable) and pro- leading to a similar mixture of reactive species – Cinn ald + cinn alc epoxide + cinn ald epoxide. Comparing EC3s and DPRA, already about 2% in commercial, extra ca 1% by metabolism

Benzylic and propargylic alcohols similarly (but benzylic alcohols would give benzaldehydes, vw or NS in LLNA. Q – Would ortho-HOCH2C6H4OH sensitize as a pro-atranol-type?

Who I am and what I do

David/Dave Roberts

PhD Manchester 1965, Organic Chemistry

Unilever Research Port Sunlight 1967-2003

1975 Sultone sensitizers as impurities in surfactants

Project to understand manufacturing by-products:

How to control /suppress them

How to know whether they're sensitizers

Dual career at chemistry/biology and chemistry/chem. eng interfaces

What I do nowadays

Consultant in Manufacturing and Toxicological Chemistry Honorary Researcher at Liverpool JM University

Major activity in CD

Quantitative Mechanistic Modelling (QMM), i.e.

How can we use chemistry to decide if a chemical:

- is a sensitizer or not
- how potent it is, if at all

The difference between pro-haptens and pre-haptens

Pro-haptens

- metabolically activated to reactive haptens in cutaneo

Pre-haptens

abiotically activated ex cutaneo

Can we always/ever be sure?

A different difference

Intrinsically allergenic

- If not directly reactive, sensitizes via conversion to a reactive species under test or exposure conditions
- Has a reproducible potency (eg EC3)

Potential allergen precursor

- Not significantly activated under test/exposure conditions, but has a tendency to form sensitizing impurities.
- Does not have a reproducible potency (eg EC3 depends on storage/handling history)

Activation reactions

Oxidation/autoxidation

- C-H to Allylic/benzylic hydroperoxides
- C=C to Reactive epoxides
- CHOH to C=O
- hydroquinones and catechols to quinones
- etc

Hydrolysis

Dehydrohalogenation
$$C_9H_{19} \rightarrow C_9H_{19} \rightarrow C_9H_{19$$

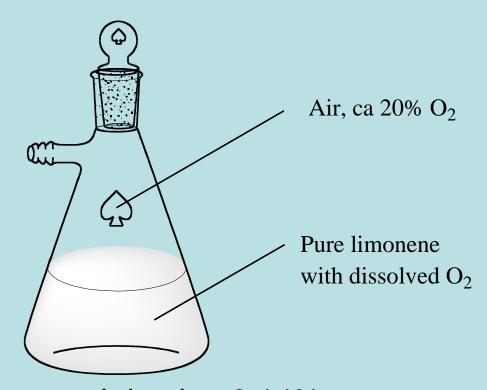
Formation of allergens by autoxidation – how much and how fast?

Several situations to consider:

Reactivity-limited

Mass-transfer-limited

Oxygen availability limited


Limited by stability of allergenic autoxidation products

Slow reaction, long time

Lab model of a half-full storage tank, 25° C

 $S(O_2)$ ca. 20mmol/L

From original dissolved O_2 , 0.25% hydroperoxides

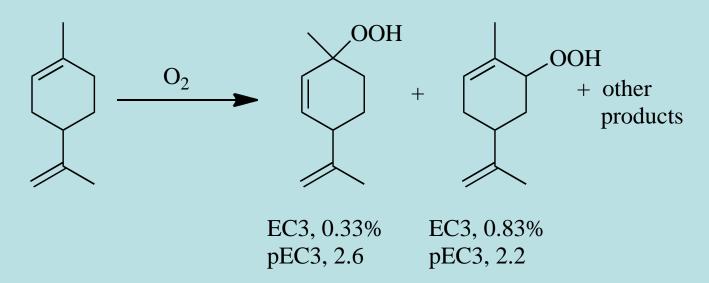
From O₂ in original head-space + air intake, 0.14% Total maximum hydroperoxide level, 0.39%

Slow reaction, longer time

Remove half the liquid in the tank

The removed volume is replaced by air (20% O₂)

Potential to form further 0.14% hydroperoxides


Total maximum hydroperoxide level now 0.53%

Further removal of liquid

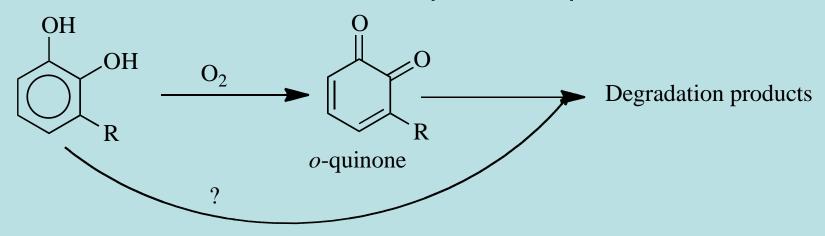
Tank level	Max. % oxidation products
Half full	0.39
1/4 full	0.53
1/8 full	0.67
1/16 full	0.71

What does this mean for potency?

Limonene autoxidation

Worst case assumptions:

Only these hydroperoxides, no decomposition, fully cross-reactive, EC3 = 0.33%


Prolonged storage, occasional removal of liquid

Tank level	Max. % oxidation products	EC3 of air-exposed limonene
Half full	0.39	85%
1/4 full	0.53	62%
1/8 full	0.67	49%
1/16 full	0.71	46%

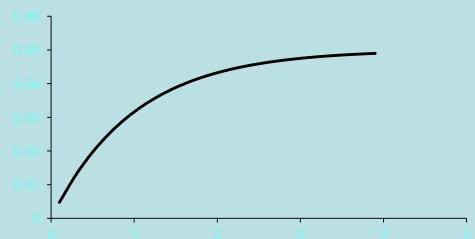
Fast reaction, O₂ mass-transfer limited, short-lived reactive allergen

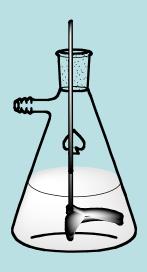
Example – poison ivy as a pre-hapten

Oxidised to a short-lived ortho-quinone – protein reactive

 $d[quinone]/dt = k_1[O_2]_{air}[AESA/V] - k_2[poison ivy][quinone] = 0 at steady state$

AESA = air exposed surface area; V = volume


Steady state concentration of quinone = (k_1/k_2) [O₂]_{air}[AESA/V]/[poison ivy]


Slow reaction, through current of air

[O₂] remains steady at ca. 20 mmol/L

$$d[ROOH]/dt = k_1[O_2][RH] - k_2[ROOH] - k_3[ROOH][RH]$$

Mixture chemistry and kinetics

In mixtures and formulations there is competition for O_2 , and some components will react more readily than others with hydroperoxides

How competitive are aldehyde O=C-H against allylic C=C-C-H?

How competitive are, e.g., limonene and linalool for O₂?

Relative reactivities of limonene peroxides and linalool peroxides in epoxidation of linalool and limonene?

Mixture potency considerations

If several allergens are present, to what extent is their potency:

Additive or...independent

By analogy with mixture toxicity in ecotox:

If compounds A, B, C...are fully cross-reactive, potency is additive: (1/EC3)mix = $f_A/EC3_A$ + $f_B/EC3_B$ + $f_C/EC3_C$... $(f_A = fraction of A in mixture, etc)$ If they aren't cross-reactive, $EC3_{mix} = EC3_A/f_A$ where A is the component closest to its EC3

Esters, R¹-CO.O-R²

Depending on R¹ and R² the -CO.O- group may:

Be directly electrophilic – acyl transfer agent Activate reaction of a group in R¹ Be involved in reaction in R² (S_N2 leaving group) Get hydrolysed:

Releasing an allergenic R²OH, or...

Losing reactivity in R¹, losing acyl transfer reactivity

Some esters

Ester

Mechanistic domain

OOH

Michael acceptor

Schiff base

Some esters

Some more esters

And two more

Key knowledge gaps – as I see it

Extent of oxidation that is likely in common practice: storage/handling of "pure" materials

Levels of potent sensitizers formed in model "typical" formulation mixtures in realistically simulated manufacturing, handling and storage conditions

Mixture chemistry, relative rates, relative potencies.

Mixture toxicity as applied to skin sensitization

- Cross- reactive
- Non-cross reactive

Relative rates of oxidation of "classical" prehaptens vs other fragrance ingredients (eg aldehydes)

Stability of key hydroperoxides etc.

RECENT DEVELOPMENTS IN STRUCTURE-ACTIVITY RELATIONSHIPS FOR SKIN SENSITISATION FOR NON-ANIMAL BASED PREDICTION OF ALLERGENIC POTENTIAL

David W Roberts

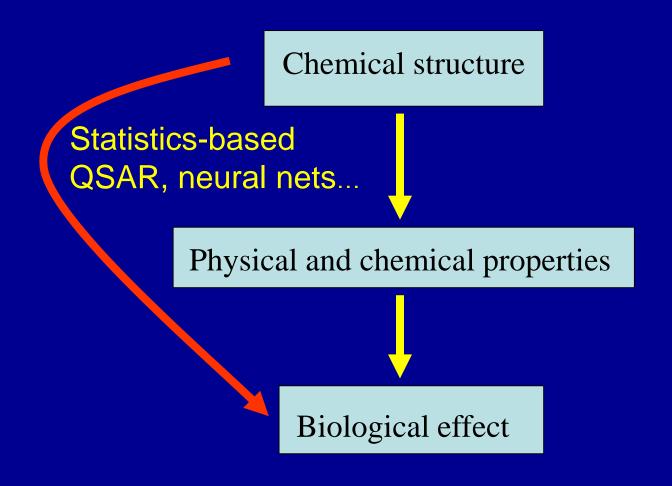
Liverpool John Moores University

School of Pharmacy and Biomolecular Sciences

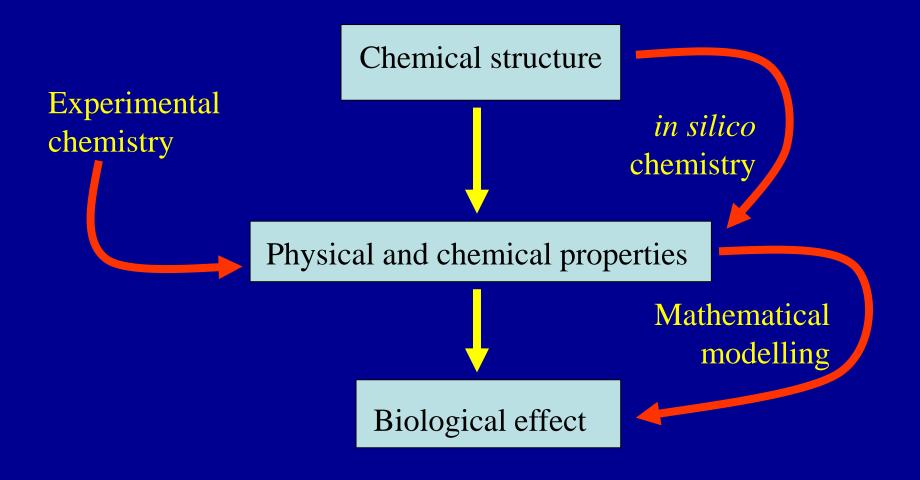
Liverpool, UK

What this is about

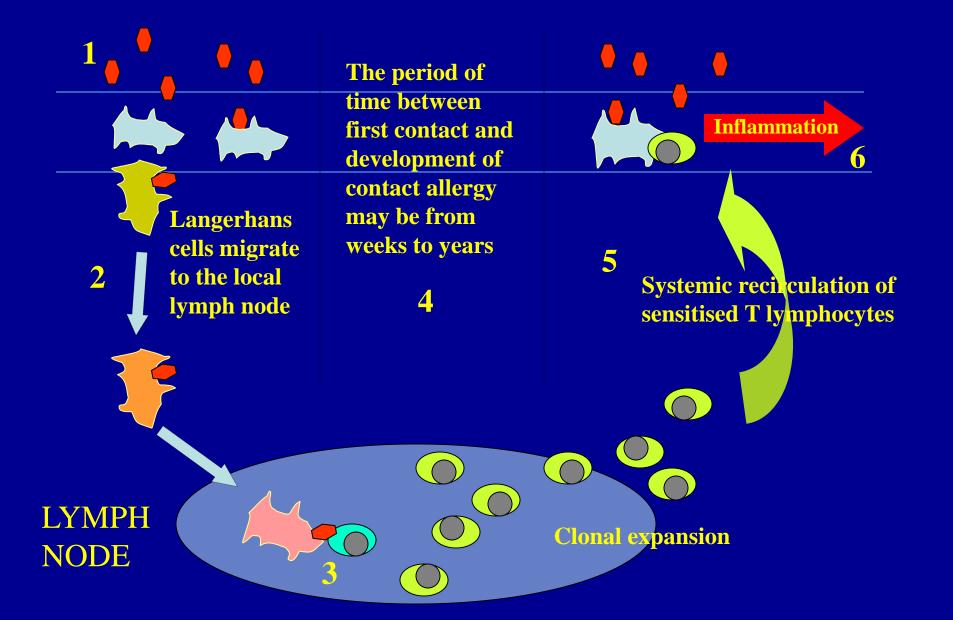
Quantitative Mechanistic Modelling (QMM), i.e.


How can we use chemistry to decide if a chemical:

- is a sensitizer or not
- how potent it is, if at all


Predictive Modelling

Chemical structure Physical and chemical properties Biological effect


Predictive Modelling – no mechanistic insight

Predictive Modelling – Mechanism-based

SKIN SENSITIZATION - what do we know?

Current preferred animal test

Mouse local lymph node assay – LLNA

Apply test chemical, in vehicle, to skin (ear)

Inject tritiated thymidine (in tail)

Excise local lymph node, measure Th uptake

Potency quantified by EC3:

Concentration giving 3x increase in Th uptake compared to controls

Binding to carrier protein

Extensive evidence dating back to 1930s

For compounds in the same reaction mechanistic domain QMMs based on reactivity and hydrophobicity can be developed

Bio-activation and abiotic-activation can be important

Reaction Mechanistic Applicability Domains

Michael acceptor

 S_NAr

 $S_N 2$

Schiff base

Acyl transfer

 $S_N 1$

Free radical

Contain sensitizers and non-sensitizers

Non-reactive, non-proreactive non-s

non-sensitizers only

What protein or peptide?

- At least 2 types
- 1. Cytosolic, modelled by cysteine peptide
- 2. Membrane-bound, modelled by lysine peptide
- 1. modelled by reactivity alone
- 2. also depends on hydrophobicity

Why we can get by without knowing the identity of the in cutaneo carrier proteins

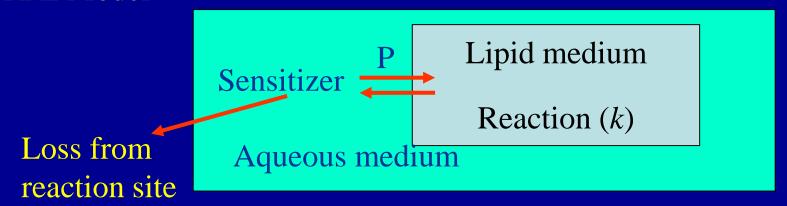
LFER principles apply

Swain-Scott relationship: $k_{rel} = ns$

n = nucleophilicity; s = susceptibility to change in n

So one nucleophile can model another...

...but only if it is the same for all the electrophiles


Why we have to keep within one mechanism

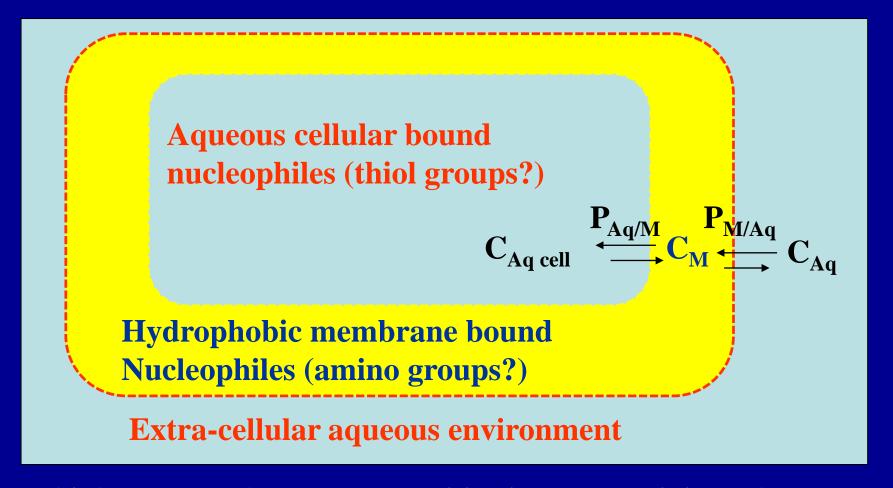
s varies between different mechanisms

HISTORY

Making it quantitative

The RAI Model

Reaction (protein alkylation) depends on dose D, on P, on k

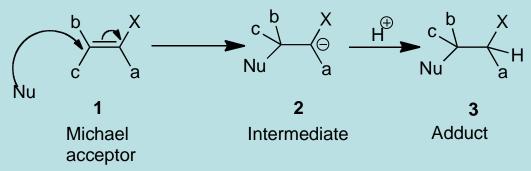

Relative alkylation index = RAI = $log[Dk_{rel}/(P+P^2)]$

Model for P: (MeOH +H₂O)/hexane Model for k: BuNH₂ kinetics

Good DR/QSARs for GP data.

Gives general potency model: potency = $a log k + b log P_{o/w} + c$

Double reaction site basis for new RAI model

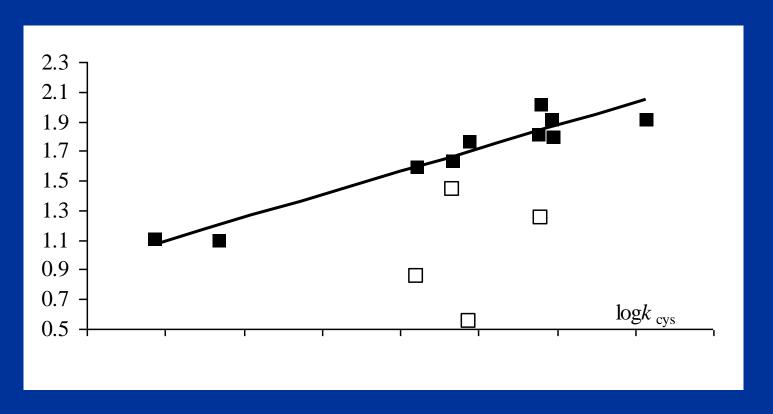


Thiol: $C_{Aq cell} \approx C_{Aq}$: sensitisation \leftarrow reactivity only

Amino: $C_M = C_{Aq} \times P_{M/Aq}$: sensitisation \leftarrow reactivity + hydrophobicity

Michael acceptor domain

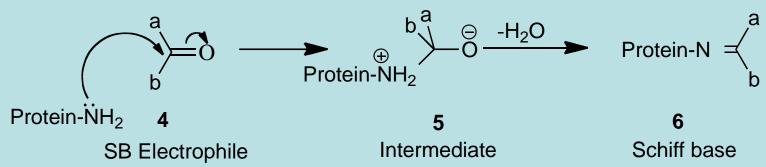
Michael acceptors

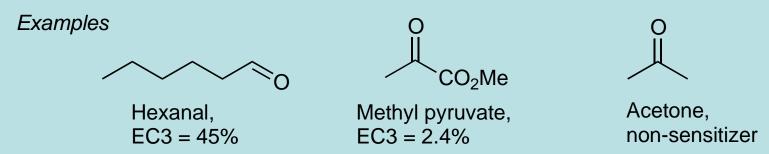


X = electronegative group capable of stabilising negative charge in intermediate **2**. Reactivity depends on X and on effects of substituents a, b and c on stability of **2**.

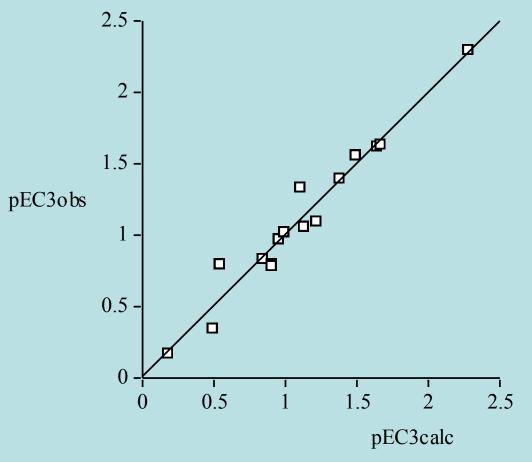
Examples

QSAR for Michael Acceptor domain

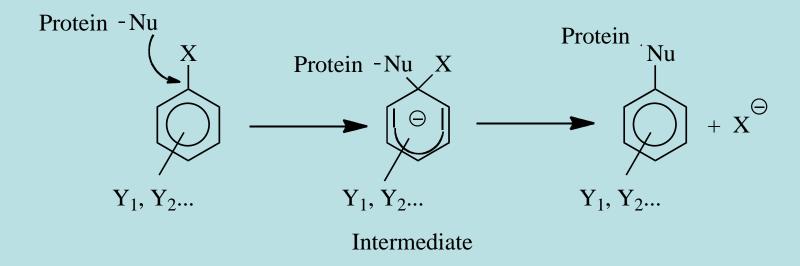

pEC3 vs logk for reaction with cysteine-based peptide


 $pEC3 = 0.24 \log k + 2.11$ $n = 10, R^2 = 0.836, s = 0.11, F = 40.8$

Schiff base domain


Schiff base electrophiles

Reactivity depends on inductive effects of groups a and b: electronegative groups stabilise the negative charge in intermediate **5**.


Schiff base mechanistic domain

pEC3 =
$$1.12(\pm 0.07) \Sigma \sigma^* + 0.42(\pm 0.04) \log P - 0.62(\pm 0.13)$$

$$n = 16 R^2 = 0.952 R^2_{adj} = 0.945 s = 0.12 F = 129.6$$

S_NAr domain

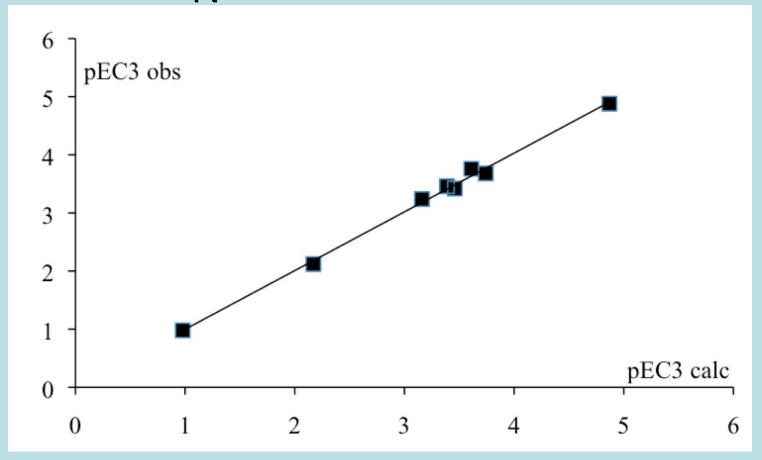
Reactivity depends on stabilization of negative charge in the intermediate:

By the X group – inductive effect, modelled by σ^*

By the Y groups –resonance + inductive effect, modelled by $\Sigma\sigma$ –

HISTORY

Lansdsteiner and Jacobs 1930s


20 Aromatic NO₂/Hal compounds

		Sensitizer (GP)		
Aniline reaction		Yes	No	
	Yes	10	0	
	No	0	10	
			,	

Covalent modification of proteins model

S_NAr domain

S_NAr domain QMM

pEC3 = $2.50 \Sigma \sigma^{-} + 0.57 \sigma^{*} - 4.52$, n = 8, R² = 0.984, s = 0.16, F = 365

The in chemico approach

If we know enough about the chemistry we can predict the sensitisation potency (or lack of)

What we need to know:

- How (if) it reacts reaction mechanistic domain
- How reactive it is rate constant or equivalent
- How hydrophobic it is partition coefficient

Reaction Mechanistic Applicability Domains

Michael acceptor Reactivity only (LLNA)

S_NAr Reactivity only (LLNA)

S_N2 Reactivity + hydrophobicity (LLNA)

Schiff base Reactivity + hydrophobicity (LLNA)

Acyl transfer

 $S_N 1$

Free radical

Non-reactive, non-proreactive non-sensitizers only

Testing Without Animals

Presented with a new chemical:

- 1. Classify it into its reaction mechanistic domain
- 2. Quantify its reactivity/hydrophobicity relative to known sensitizers in the same domain
- 3. Use mechanism-based QSAR to predict potency
- 1 and 2 can sometimes be done form inspection of structure. If not, experimental chemistry data needs to be generated (no animals are harmed)
- 3 can only be done if a QSAR exists for the new chemical's mechanistic domain

What can already be done

Presented with a new chemical:

Using SAR

- likely to be a sensitizer (identification of reactivity alerts), or...
- likely to be a non-sensitizer (absence of reactivity alerts), or...
- can't predict (unfamiliar features) by inspection experimental chemistry needed

Using QSAR

- can predict LLNA potency from structure, or...
- need experimental chemistry parameters (eg rate constants), or...
- can't predict (no QSAR for this type of chemical) but SAR-based read-across may sometimes be able to give a semi-quantitative estimate

What we still need

Kinetics for SB domain

Better predictive capability for pro-electrophiles

Some difficult types:

aliphatic amino groups

multifunctional aromatics

epoxidisable (or not?) olefins and aromatics

Cell based assays

THE VISION Testing Without Animals

Presented with a new chemical:

- 1. Classify it into its reaction mechanistic domain
- 2. Quantify its reactivity/hydrophobicity relative to known sensitizers in the same domain
- 3. Use mechanism-based QSAR or mechanistic readacross to predict potency

Apply in tandem with in vitro assays when available