What is known based on metabolism, induction and elicitation data (animal and clinical) regarding pro-hapten activation, cross-reactivity of esters and breakdown products - mechanistic understanding and quantitative follow-up...and a raccoon... (J. Prévert - Inventory)

Prof. Jean-Pierre Lepoittevin University of Strasbourg, France

IDEA Workshop Pre- and pro-haptens Leuven, 20th-21st October 2015

Specificity of contact sensitization...

- By definition and experience contact sensitization is "chemical" specific...
- This specificity is associated to a supramolecular association between MHC/antigenic peptide/TCR molecules...
- Inter-individual variations should be expected...

• • • Cross-reactions at a molecular level...

- Lack of specificity in antigenic peptide - TCR interactions...
- Selection of T-cell clones during the sensitization process...
- Activation of T-cell clones during the elicitation process...
- Inter-individual variations should be expected...

True cross-reaction between two sensitizers A and B...

- A and B are chemically different
- A is not metabolized into B...
- B is not metabolized into A...
- A is not transformed into B...
- **B** is not transformed into A...

False cross-reaction between two sensitizers A and B...

1-Tuliposide A

6-Tuliposide A

hydrolysis

Tulipalin A

False cross-reaction between two sensitizers A and B...

Miconidin

Miconidin methyl ether

metabolism

How to investigate cross-reactions...

- Using animal models...
- At a cellular level...
- In Human individuals...
-

How to investigate cross-reactions...

- Using animal models...
- At a cellular level...
- In Human individuals...
-

• • • Animal models (Guinea-Pigs)

Functional analogy...

Structural analogy...

• • α-Methylene-γ-butyrolactones...

α -Methylene- γ -butyrolactones...

Enantiomers have similar « chemical » structures but very different « stereochemical » structure...

True cross-reaction between two sensitizers A and B...

Alantolactone (Inula helenium L.)

How to investigate cross-reactions...

- Using animal models...
- At a cellular level...
- In Human individuals...
-

• • • At a cellular level....

- Sensitization of mice with TNP-chloride...
- Isolation of T-cell clones reactive to TNPsulfonate...
- Screening with proteins and peptides modified by TNP...
- Identification of lysine-TNP modified peptides...

• • • At a cellular level....

How to investigate cross-reactions...

- Using animal models...
- At a cellular level...
- In Human individuals...

• • • Clinical studies

Cross-reactions...

Co-sensitization...

• • • Human individuals...

Re-test methodology...

Statistical analysis of clinical data...

Human individuals...

• • • Human individuals...

Re-test methodology...

Statistical analysis of clinical data...

Multiple positive tests to corticosteroids

Hydrocortisone

• • • Cross-reactions among corticosteroids

Group A: Hydrocortisone type

Group B: Triamcinolone acetonide type

Group C: Betamethasone type

Group D: Hydrocortisone-17-butyrate type (D1 and D2 subdivision)

• • • Group A

Hydrolysis of esters...

Group D2

• • • Prohaptens?

Modified by skin metabolism...

Reactive metabolites...

Metabolism of xenobiotics

Main enzymatic systems identified in Human epidermis...

		Cytochromes P450 (CYPs)	1A1/1B1, 2B6/2E1, 3A5/3A7
EC 1	Oxydoreductases	Alcohol / Aldehyde deshydrogenases (ADH / ALDH)	EC 1.1.1.1 / EC 1.2.1.3
		Peroxidases	EC 1.11.x
EC 2	Transferases	Catechol-O-methyl transferases (COMT)	EC 2.1.1.6
		N-acetyltransferases (NAT)	EC 2.3.1
		Glucuronosyltransferases (UGT)	EC 2.4.1.17
		Glutathion S-transferases (GST)	EC 2.5.1.18
		Sulfotransferases (SULT)	EC 2.8.2.x
EC 3	Hydrolases	Esterases (ES)	EC 3.1.x

Non invasive approach...

Directobservation...Highly nonhomogeneousenvironment...

• • • HRMAS NMR...

- High-Resolution Magic Angle Spinning
 "HRMAS" Nuclear Magnetic Resonance...
- Bring to zero inhomogeneity associated with the sample...

• • • HRMAS NMR...

Test Chemical

Fragrance substitution...

Isoeugenol can be substituted by derivatives transformed back into isoeugenol... by abiotic or biotic pathways?

• • • The iso/eugenyl acetates story...

- The mechanism underlying this observation is still not clear...
- It can be hypothesized that isoeugenyl esters are hydrolyzed either enzymatically (epidermal esterase) or chemically (hydrolysis)...
- □ This hypothesis can be supported by the Castro et al. study showing in vitro that skin cytosol/microsomes could hydrolyze isoeugenyl/eugenyl acetate into their parent compounds...

The iso/eugenyl acetates story...

- Carbon-13 substituted iso/eugenyl acetates were synthesized
 - To increase the sensitivity...
 - To discriminate between acetates released by iso/eugenyl derivatives and other acetates...

• • • The iso/eugenyl acetates story...

- □ The stability of eugenyl and isoeugenyl acetates was first assessed in a 1:3 mixture of acetonitrile and phosphate buffer (PBS pH 7.4)...
- Reactions were followed by ¹³C NMR over a period of one month...
- Both eugenyl and isoeugenyl acetates were found to be rather stable toward chemical hydrolysis with only a slow release of free acetate over time...

The iso/eugenyl acetates story...

 Stability of iso/eugenyl acetates in a 1:3 mixture of acetonitrile and PBS pH 7.4

Model 1: iso/eugenyl acetates

- A set of experiments was carried out with isoeugenyl acetate ¹³C-4 following incubation times of 5, 10, 15, 30 and 45 minutes, respectively...
- Spectra obtained indicate a very fast hydrolysis of isoeugenyl acetate ¹³C-4...
- Even after 5 min, the residual signal of isoeugenyl acetate (δ 170.8 ppm) was very small with a major signal at δ 183.4 ppm corresponding to the hydrolyzed acetate ...

The iso/eugenyl acetates story...

Stability of isoeugenyl acetate on RHE

The iso/eugenyl acetates story...

Stability of isoeugenyl acetate on RHE at 4°C

what do we know? what do we guess? what do we just ignore? ... and a raccoon?

