Derivation of Skin Sensitization Potency using the Bayesian Net Integrated Testing Strategy

P. Kern, E. Deconinck, C. Ryan, G. Dameron, J. Jaworska
P&G
May 2018
IDEA Case Study Workshop

Introduction

- Use of Bayesian Net approach for a sensitization potency prediction
- Generates a probabilistic hypothesis about skin sensitization hazard and potency
- Decision support system for a risk assessor, providing a quantitative weight of evidence.
- One of the OECD case studies for defined approaches

Bayesian Net ITS3- Skin Sensitization

- Predicts a skin sensitization potency (even when data are missing)
- Expressed as probability distribution of LLNA pEC3, 4 potency classes: nonsensitizers (NS), weak (W), moderate (M), and combined strong and extreme (S) sensitizers.

P(LLNA=NS, W, M, S| evidence)

EC3% (50th or any other percentile)

Safety • Sustainability • Regulatory • Technical Relations

- Can be used:
 - For classification and labeling under the GHS C&L scheme
 - To set NESILs for QRA
 - For the development of testing strategy if data are missing. Measures progress by uncertainty reduction.

Bayesian Net ITS3- Structure and Inputs

- Phys Chem properties
- In silico potency prediction considering metabolism and potential for auto-oxidation (TIMES-SS)
- KE1: Cys and Lys binding in DPRA
- **KE2:** KEC1.5, KEC3 and IC50 in KeratinoSensTM
- **KE3:** EC150, EC200 and CV75 in h-CLAT

Hazard Potency Prediction Process (1)

- Collect evidence:
 - TIMES-SS prediction
 - Highest potency among parent molecule and metabolites
 - Reactivity alerts: determine direct Michael Acceptors
 - Phys chem parameters: (logD, Ws@pH7, f_ion, PB)
 - Conduct DPRA, Keratinosens, hCLAT
- Assessment of applicability domains:
 - Biological: Potential to be a pre- or prohapten?
 - Chemical:
 - Ionization: chemicals that are 100% ionized not suitable.
 - Water solubility at pH=7 cut-offs

Ws at pH=7 [M/I]	DPRA	Keratinosens	hCLAT
<2.5e-08	Х	х	х
2.5e-08 - 1.7e-04	ok	х	Х
1.7e-04 - 2.1e-04	ok	ok	х
> 2.1e-04	ok	ok	ok

Hazard Potency Prediction Process (2)

- Integrate all the "in domain" evidence to obtain the pEC3 probability distribution ("run BN –ITS3")
- Post processing step: correction for direct Michael acceptors adjust pEC3 probability distribution
- Evaluate confidence: Conversion of probability distribution to Bayes' Factors
 - Bayes factor removes biases in the predicted probability distribution introduced by distribution of a training set.

$$B = \frac{P(H = x|e)/P(H = not_x|e)}{P(H|x)/P(H = not_x)} = \frac{posterior \ odds}{prior \ odds}$$
Jeffreys, 1961

Bayes Factor	Strength of evidence
<1	Negative (supports alternative)
1-3	weak
3-10	Substantial
>30	Strong

- Finalise hazard or potency prediction depending on uncertainty information
 - Potency class NS, W, M, S
- Conversion from pEC3 to EC3% (if needed)

Case Study Eugenol

- TIMES predicted metabolites as weak sensitizers
- DPRA, h-CLAT and Keratinosens generated (raw data of assays used as input to BN-ITS3)
- Phys chem data calculated

	DP	RA	Keratinosens			h-CLAT				
Name	Cys depl [%]	Lys depl [%]	EC1.5 [μM]	C1.5 EC 3 IC 50% E ⁽ μΜ] [μΜ] [μΜ] [μ		CD86 CD54 EC150 EC200 [μg/ml] [μg/ml]		TIMES- M	TIMES-P	
Eugenol	9.2	19.2	>2000	>2000	1505.7	64.4	137.2	143.2	strong	NS
	Po	OS	Neg		Pos			P	OS	

- Mainly concordant data (except Keratinosens)
- Within applicability domain

Case Study Eugenol

B(W) pEC3 category.1 pEC3 category.2 B(S) pEC3 category.3 pEC3 category.4 B(NS) B(M) 0.011862659 0.728209336 0.258984556 0.000943449 0.03 7.42 0.93 0.00

- High probability to be in Category 2 (weak sensitizer)- in line with LLNA
- High Bayes factor- substantial evidence

From pEC3 class to NESIL derivation

- NESIL is a human threshold: Conservatism needs to be factored in when NESIL is derived based on BN ITS3 prediction.
- Translate pEC3 potency class into a "potency class NESIL"
 - Conservative value for QRA?
 - LLNA- EC3 13% (3250ug/cm2; IFRA Standard WoE NESIL 5900 ug/cm2)

pEC3 Potency Class	Default NESIL (ug/cm²)	ECETOC values (ug/cm²)	EC3 Range (%)
Non Sensitiser NS	>10000		>100
Weak W	1000	2500	10~100
Moderate M	100	250	1~10
Strong S	10	25	0.1~1

Eugenol

 The output of BN –ITS3 is a probability distribution. Could that be transformed to a deterministic value to define a NESIL?

EC3 Conversion for Eugenol

pEC3 category.1	pEC3 category 2	pEC3 category.3	pEC3 category.4	B(NS)	B(W)	B(M)	B(S)
0.011862659	0.728209336	0.258984556	0.000943449	0.03	7.42	0.93	0.00

- Convert probability value into EC3
 - the 50-percentile, i.e., the dose at which the likelihoods for a lower or higher EC3 values are balanced- probably underestimation
 - the 90 % percentile, i.e., the concentration at which the chance of a lower real EC3 value is only 10 %.- very conservative
 - 70th percentile corresponded best to 0.5*EC3 for the all weak/ moderate sensitizers investigated

	% tile	EC3%	ug/cm ² *	*1% in LLNA = 250 ug/cm ²
LLNA Eugenol		13	3250	
	50	16.5	4125	
	70	9.9	2475	
	90	3.0	750	Global Pr

Safety • Sustainability • Regulatory • Technical Relations

Case Study Hydroxycitronellal

- Experimental LLNA EC3- 22% (5500 ug/cm²)
 - IFRA Standard NESIL 5000ug/cm²
- Collect Input Parameters

hCLAT Ksens		DP	RA		Phy	s Chem	prope	rties				
EC150	EC200	CV75	KEC1.5	KEC3	IC50	DPRACys depletion	DPRALys depletion	TIMES -M	Log D @pH7	Protein Binding %	Ws@ pH=7	fion
205.5	155.6	4063.5	79.4	142.9	2028	17.5	6.5	3	1.65	45.2	0.019	0
	Pos			Pos		Po	os	Pos				

- Concordant data, in domain
- Identified as direct Michael acceptor
- Simulate Prediction with missing data:
 - Use all data as evidence or leave h-CLAT data out.

Case Study Hydroxycitronellal

Bayes' factors

	B(NS)	B(W)	B(M)	B(S)
No h-Clat	1.2	2.6	0.7	0.07
All evidence	0.77	3.1	0.92	0.006

Weak evidence
Substantial evidence

- Adding more input data changes probability distribution and increases evidence- lowers uncertainty in prediction
- Allows planning testing strategy
- Weak Sensitizer- substantial evidence with all data input
- Potency class NESIL: 1000-2500 ug/cm²
- pEC3-EC3% conversion:
 - 22% (50th %tile= 5500ug/cm²),
 - 11% (70%tile= 2750 ug/cm²)

Case Study Farnesal

- Experimental LLNA 12% (weak, 3000 ug/cm²)
- Collecting input parameters
- All in domain, concordant data
- Determine pEC3 probability distribution, correct For Michael acceptors and calculate Bayes factors

	B(NS)	B(W)	B(M)	B(S)
All evidence	0.00	0.4	5.9	0.91
All evidence+ MA correction	0.23	2.8	1.6	0.24

- Switch from Moderate sensitizer (substantial evidence) to weak
- Potency class NESIL weak (to moderate)
 - 1000 ug/cm² (100 ug/cm²); can be converted to EC3

Case Study Safranal

H₃C CH₃ CH₃

Collecting input parameters

hCLAT		Ksens		DPRA			Phy	s Chem	prope	rties		
EC150	EC200	CV75	KEC1.5	KEC3	IC50	DPRACys depletion	DPRALys depletion	TIME S-M	Log D @pH7	Protein Binding %	Ws@ pH=7	fion
176.2	256.2	456.8	5.4	33.5	337.3	91.8	0	3	2.8	40	0.008	0
Pos			Pos		Pe	os	Pos					

- All in domain, use all for BN-ITS3
- Concordant data
- Determine pEC3 probability distribution and calculate Bayes factors

Case Study Safranal

- Identified as Michael acceptor
- Adjust pEC3 values as per BN-ITS guidance and adjust BFs

Buyes factors										
	B(NS)	B(W)	B(M)	B(S)						
All evidence	0.00	0.1	3.6	2.7						
All evidence+ MAcorrection	0.01	1.7	2.3	0.6						

Raves' factors

- Moderate strong sensitizer
- Potency class NESIL: 10-100 ug/cm²
- pEC3 to EC3% conversion (70th %tile): 2.5 (625 ug/cm²)
- Matches the experimental LLNA EC3- 7.5%, BUT:
- WoE NESIL IFRA Standard = 29 ug/cm²
 - How can this be addressed?

Uncertainties in BN ITS3

- As in all Tox assays or methods, don't take the ITS results in isolation- careful review of all data is always needed.
- ...in the model structure due to uncertainty in knowledge around AOP
- ...in experimental data due to variability of biological data
- LLNA variabilities of BN ITS3 training set considered in 4 way classification
- Probabilistic models handle data uncertainty.
 - Evidence used in the model is represented as range spanning over discretization bins.
- Conversion to Bayes factors allows for consistency when accepting uncertainty in predictions

Increase Confidence using Analogs

- BN allows to quantitatively weigh in analogue information about potency and quality
- Example Eugenol
 - Analogs identified (3 weak, 1 NS) (Wu et al. 2013, Blackburn et al. 2014)

$$HO$$
 CH_2
 HO
 CH_3
 H_3C
 CH_2
 HO
 CH_3
 H_3C
 CH_3
 CH_3

- Example Safranal
 - 1 Analog moderate- strong sensitizer

- Prior distribution x evidence=posterior distribution
 - w/o analogue data = prior evenly distributed over 4 classes
 - With prior -> expert converts analog data into a distribution
- Possible adaptation of priors, depending on potency of analogs:

BN-ITS3 Checklist for each Chemical

- ✓ Gather evidence and check for completeness:
 - ✓ TIMES-SS prediction
 - ✓ Phys chem parameters: (logD, Ws@pH7, f_ion, PB)
 - ✓ DPRA, Keratinosens, hCLAT
- ✓ Assessment of applicability domains:
 - ✓ Pre or prohapten?
 - ✓ Direct Michael acceptor chemistry ?
 - ✓ Ionization: 100% ionized?
 - ✓ Water solubility at pH=7?
- ✓ Integrate all the "in domain" evidence to obtain the pEC3 probability distribution
- ✓ Post processing step of probability distribution correction for direct Michael acceptors
- ✓ Evaluate confidence: Conversion of probability distribution to Bayes' Factors
- ✓ Finalise hazard or potency prediction depending on uncertainty information
 - ✓ Potency class NS, W, M, S
- ✓ Conversion from pEC3 to EC3% (if needed)

Conclusions and Outlook

- BN ITS3 allows hazard and potency prediction
 - Limitations in applicability domain
 - Not proprietary- but some adaptations planned to switch to nonlicense software
- Confidence estimation via Bayes factors
 - Define acceptable Bayes factors
 - if the ITS output does not provide substantial evidence for a potency class then analog data might become important
- Setting of potency class NESILs or EC3 values possible- Input for QRA
 - Explore more chemicals to define best approach for EC3 value determination
 - Define degree of conservatism needed to reflect human thresholds
- Prediction also possible with incomplete data sets
 - Define minimum data requirements
 - Allows to define testing strategy
- Additional information e.g. from analog structures can be considered
 - Develop guidance