An Interim Report of the RIFM AAT Dermal Sensitization Research Program Devin O'Brien, M.Sc. Human Health Scientist **IDEA Workshop**: Replacement of Animal Testing in QRA for Skin Sensitization 05/17/2018 #### **Overview** - Brief Overview of RIFM - Long Range Research Plan - RIFM AAT Dermal Sensitization Research Program - **■** Human Potency Categorization - Correlation between animal vs. human data - In chemico and in vitro research program - Collaborations to enhance in silico models - **■** Dermal Sensitization Threshold (DST) ### RIFM's Mission Statements defines the organization's role as a research institution: - Engage in research and evaluation of fragrance materials through an independent Expert Panel - Determine safety in use for fragrance materials - Gather, analyze, and publish scientific information - Distribute scientific data and safety assessment judgments to RIFM members, industry associations and other interested parties - Maintain an active dialogue with official international agencies - Take input from our stakeholders (e.g., Core Teams, Expert Panel, external collaborators) with a focus on research that: - Improves the SA Process - Addresses other endpoints - Supports sustainability efforts ### **RIFM Safety Evaluation Process** Safety Assessment Endpoints **Foundation Science** Environmental Genotoxicity **Phototoxicity** Repeat Dose Reproduction Respiratory Sensitization Exposure Methodologies Improved/Alternative Test Methodologies In Silico Models Exposure Step 1: Evaluate available data Step 2: Read across **Step 3:** Apply the Dermal Sensitization Threshold (DST) Step 4: Generate data | | | Impr | ove t | he SA Pr | gu s | | | |-------------------------|--------------------------------------|--|----------------------|--|---|-------------------------------|--| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressi
other
endpoint | Status | | | In vitro
methods &
use of data | X | X | X | X | | On-going | | Dermal
Sensitization | LLNA vs.
Human | X | | X | X | | 1 st paper
published;
2 nd in
preparation | | | In Silico
Methods | X | X | X | X | | On-going | | Exposure | Enhance
Model | X | | Χ | X | X | On-going | | | | Impr | ove t | he SA Pr | sing
nts | | | |--------------|--|--|----------------------|--|---|---------------------------------|---------------------| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressin
other
endpoints | Status | | Genotoxicity | BlueScreen™ | X | X | X | X | | Manuscript in prep. | | | Bio-informatics | | X | | X | | On-going | | | Reconstructed
Skin MNT
Skin COMET | X | | X | X | | On-going | | | In Silico | X | X | X | X | | Planned | | | In Ovo Models | X | | X | X | | Planned | | | High Throughput
Screening for
mech of action | X | | X | X | | Planned | | | | lı | | ve the socess | SA | sing
r
nts | | | |----------|---|--|----------------------|--|---|----------------------------------|----------|--| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressing
other
endpoints | Status | | | TTC | DST (Sensitization), TTC Repeat dose, Reproduction Toxicity, Inhalation | X | X | X | X | | On-going | | | | Internal Oral TTC values: | X | X | X | X | | Planned | | | | Internal Dermal TTC values: | X | X | X | X | | Future | | | | | Impro | ove t | he SA P | rocess | ng
ts | | | |------------------------------------|-------------------------------|--|----------------------|--|---|------------------------------|-------------------|--| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressi
other
endpoin | Status | | | | Structural alerts | X | X | X | X | | Future | | | Repeat Dose, Reproduction Toxicity | Adverse
Outcome
Pathway | X | X | | X | X | Future | | | Developmental Toxicity | In vitro
methods | X | X | X | X | | Exploring methods | | | | | Impr | ove t | he SA Pr | DG S | | | |-------------|---|--|----------------------|--|---|-------------------------------|--------------------------------| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressi
other
endpoint | Status | | Respiratory | In silico/In chemico | X | X | X | X | | On-going | | | U Rochester in vitro systems to characterize respiratory irritants and sensitizers. | X | X | X | X | | On-going | | | Human lung slice | X | X | X | X | | Completed; manuscript in prep. | | | Characterizing Initiating Events for Respiratory Sensitization | X | X | X | X | | Planned | | | | | ove t | he SA Pr | ng
S | | | |---------------|--|--|----------------------|--|---|---------------------------------|----------| | Projects | Notes | Method
Development
or Validation | Increasing
Output | Safety In
Use/Improve
Criteria
Document | Improving/
advancing
Criteria
Document | Addressin
other
endpoints | Status | | Phototoxicity | Compare test
methods
Strategic for
Safety
Assessment
Process | X | X | X | X | | On-going | | Photoallergy | Investigate use of in vitro dermal sensitization assays to test for photoallergy | X | X | X | X | | Planned | ## Long Range Research Plan: Current Environmental Projects | | | Improve the SA Process | | | ty | | | | |--|--|--|-------------------|--|---|----------------------------------|---------------------------------------|--| | Projects | Notes | Method
Development or
Validation | Increasing Output | Global
Applicability of the
RIFM Framework | Improving/
advancing the
RIFM Framework | Addressing
other
endpoints | Supporting
sustainabili
efforts | Status | | Bioaccumulation assessment of NCSs | Stockholm University
Phase 1 completed/
Phase 2: 2016-2018 | X | | | | X | | On Time/On Budget First paper published | | in vitro metabolism assessment of fragrance ingredients for bioaccumulation | KJ Scientific/
Wildlife International
Phase 1a: 2016/
Phase 1b: 2016-2017 | X | | | | X | | Phase 1 nearly complete/On Budget | | Fate and Effects of personal care ingredients in temperate and subtropical sediments | Roskilde University/
Wageningen
University
2013-2018 | | | X | | X | X | On Time/On
Budget
First paper
published | ## Long Range Research Plan: Current Environmental Projects | | lmpi | ove t | he SA Pr | ocess | , 5) | a
lity | | | |---|--|----------------------|---|--|---------------------------------|-------------------------------------|---|--| | Projects | Method
Development or
Validation | Increasing
Output | Global
Applicability of
the RIFM
Framework | Improving/
advancing the
RIFM
Framework | Addressin
other
endpoints | Supporting
sustainabi
efforts | Status | | | Retrospective
Framework Analysis | | X | | X | | | On hold/Resources redirected to SA effort | | | Strategy For Fish
Ecotoxicity Testing | X | | | | | X | Continue to support HESI efforts/Other activities on hold: resources redirected to SA effort | | | NCS SA: Research and Testing Needs | X | | | X | | | Approach under development. Completion planned 4Q 2017. | | | Exposure/Effects in D&E Regions | | | X | | | X | 2018 Workshop in planning to further define next phase and linked with Changes to Exposure Modeling | | | Bioaccumulation:
Terrestrial Organisms | | | | | X | | First data review at this months ETF meeting | | | Changes to Exposure Modeling | | | X | Χ | | X | See note above | | #### **Dermal Sensitization Research Program** #### **Analyses of Human Data** - Categorization of fragrances according to their relative skin sensitization potency - All available human data used (HRIPT, HMT, DPT) - A manuscript of all RIFM generated HRIPT data is in progress! - HRIPTs are only conducted to confirm a no effect level #### **LLNA vs. Human Data** 681 #### Cutaneous and Ocular Toxicology http://informahealthcare.com/cot ISSN: 1556-9527 (print), 1556-9535 (electronic) Cutan Ocul Toxicol, Early Online: 1–5 © 2014 Informa Healthcare USA, Inc. DOI: 10.3109/15569527.2014.979425 RESEARCH ARTICLE Correlation between experimental human and murine skin sensitization induction thresholds Anne Marie Api¹, David Basketter², and Jon Lalko¹ ¹Research Institute for Fragrance Materials, Woodcliff Lake, NJ, USA and ²DABMEB Consultancy Ltd, Sharnbrook, Bedfordshire, UK **Part 2 in Progress** #### In Chemico and In Vitro Methods ~50 RIFM Fragrance Ingredients in Collaboration with Cosmetics Europe ~50 RIFM Fragrance Ingredients - Extend the applicability domain of the Bayesian network using RIFM data - **■** Pilot underway - LLNA, HRIPT and RIFM generated DPRA, KeratinoSens™, h-CLAT and SENS-IS data - PPRA and U-Sens data to be considered for inclusion upon completion Research article A quantitative *in silico* model for predicting skin sensitization using a nearest neighbours approach within expert-derived structure-activity alert spaces Steven J. Canipa, Martyn L. Chilton, Rachel Hemingway, Donna S. Macmillan , Alun Myden, Jeffrey P. Plante, Rachael E. Tennant, Jonathan D. Vessey, Thomas Steger-Hartmann, Janet Gould, Jedd Hillegass, Sylvain Etter, Benjamin P. C. Smith, Angela White, Paul Sterchele, Ann De Smedt, Devin O'Brien, Rahul Parakhia, ... See fewer authors ∧ First published: 28 February 2017 | https://doi.org/10.1002/jat.3448 Regulatory Toxicology and Pharmacology Volume 95, June 2018, Pages 227-235 Making reliable negative predictions of human skin sensitisation using an *in silico* fragmentation approach Martyn L. Chilton ^a △ ☑, Donna S. Macmillan ^a, Thomas Steger-Hartmann ^b, Jedd Hillegass ^c, Phillip Bellion ^d, Anna Vuorinen ^d, Sylvain Etter ^e, Benjamin P.C. Smith ^f, Angela White ^g, Paul Sterchele ^h, Ann De Smedt ⁱ, Milica Glogovac ^j, Susanne Glowienke ^j, Devin O'Brien ^k, Rahul Parakhia ^k # DERMAL SENSITIZATION THRESHOLD (DST) - Identifies an exposure below which there is a low concern for the induction of sensitization - RIFM collaborated with R Safford and D Roberts to extend DST for reactive chemicals and identify high potency chemicals - Safford, R.J., Api, A.M., Roberts, D.W., Lalko, J.F., 2015b. Extension of the Dermal Sensitisation Threshold (DST) approach to incorporate chemicals classified as reactive. Regulatory Toxicology and Pharmacology, 72, 694-701. - Roberts, D.W., Api, A.M., Safford, R.J., Lalko, J.F., 2015. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied. Regulatory Toxicology and Pharmacology, 72, 683-693 - Supported integration of rules to identify high potency category chemicals for which DST should not be applied into TIMES-SS software - Resulted in the release of version 2.28.1 - Working to refine/strengthen DST with Dr. Safford by expanding the dataset ### Thank you! Woodcliff Lake, New Jersey, USA #### Applicability Domain of the LLNA # Research Initiative #### ARTICLE IN PRESS Regulatory Toxicology and Pharmacology xxx (2016) 1-8 Contents lists available at ScienceDirect #### Regulatory Toxicology and Pharmacology journal homepage: www.elsevier.com/locate/yrtph Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitization potency. Part 1. Underlying physical organic chemistry principles and the extent to which they are represented in the LLNA validation dataset D.W. Roberts a, *, A.M. Api b, G. Patlewicz c, 1, T.W. Schultz d - ^a School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom - b Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA - ^c DuPont Haskell Global Centers, 1090 Elkton Road, Newark, DE 19711, USA - ^d The University of Tennessee, College of Veterinary, 2407 River Drive, Knoxville, TN 37996, USA / xxx (2016) 1-5 eienceDirect d Pharmacology r.com/locate/yrtph Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitisation potency. Part 2. The biological variability of the murine Local Lymph Node Assay (LLNA) for skin sensitisation* David W. Roberts a, *, Anne Marie Api b, Aynur O. Aptula c - School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom - b Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States - ⁶ Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, United Kingdom Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitisation potency. Part 3. Apparent discrepancies between LLNA and GPMT sensitisation potential: False positives or differences in sensitivity?* David W. Roberts a, *, Terry W. Schultz b, Anne Marie Api c b The University of Tennessee, College of Veterinary, 2407 River Drive, Knoxville, TN, 37996, USA ^c Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NI, 07677, USA ^{*} School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom #### **Information Sources** | Phys-chem, Reactivity, Absorption & Metabolism, In silico tools | In chemico
In vitro studies | Mouse and Guinea pig
Studies | Human data | |---|---|--|-------------------------------------| | OECD QSAR Toolbox | <u>DPRA</u> (KE 1) | Local Lymph Node Assay (KE 4) | Human Repeated
Insult Patch Test | | TIMES-SS
DEREK NEXUS | KeratinoSens [™] , LuSens [™]
hCLAT, U-Sens [™] (KE 2 +
3) | GP Maximization Test
GP Buehler Test (AO) | (HRIPT) (AO) | | Toxtree, SAM | PPRA, Sens-IS® | GP: OET, CET, FCAT, DT | H-Maximization test | | | | Mouse ear swelling test | Diagnostic Patch tests |