Weight of individual parameters measured in NAMs: meta-analysis and how it can be applied to NESIL determination — including case studies

IDEA meeting on NAM

10.12.2019, Andreas Natsch

Agenda

- 1. Quantitative parameters in validated *in vitro* assays
- 2. Correlation of individual parameters to LLNA potency
- 3. Combinations of parameters for models
- 4. Givaudan approach for deriving a NESIL
- 5. Case studies on existing molecules
- 6. Case studies on new materials

Quantitative contribution to potency assessment of individual tests

• Next to binary prediction model, the individual tests contain quantitative (dose-response) information – quantitative information not part of validation

KeratinoSens

- EC1.5, EC3 –Dose for 1.5 / 3-fold Luciferase induction
- IC50 for 50% reduction in cell viability

hClat

- EC150 dose for 1.5-fold induction of CD86
- EC200 dose for 2-fold induction of CD54
- MIT minimum of EC150 and EC200
- CV75 for 50% reduction in cell viability

DPRA

% depletion for Cys and Lys peptide

Kinetic DPRA – new modified DPRA

Kinetic rate for peptide depletion

In vitro tests used: KeratinoSens® - Typical dose-response curve

- In each test, chemicals are tested at 12 different concentrations
- EC1.5, EC3 and IC50 are recorded in μM

Example for the hair dye component *p*-phenylendiamine (strong sensitizer)

In vitro tests used: Kinetic rate constants with peptides

- Idea: Kinetic rate (velocity) of the reaction between peptide and sensitizer indicates how much allergenic protein modifications are made
- Kinetic peptide reactivity assay measures this rate
- Same assay as with HPLC-UV (DPRA) or LC-MS peptide reactivity assay:
 - Incubate peptide and sensitizer monitor reaction
- Multiple doses and multiple time points high throughput assay in microtiter plates
- Peptide depletion mesured by fluorescent test
- Ln(100-depletion) is ploted vs. time or vs. concentration
- ⇒ rate constant K_{max}
- = kDPRA Validation study currently under peer-review

Quantitative contribution to potency assessment of individual tests

- All parameters correlate to potency
- Shown for all chemicals (sensitizers and non-sensitizers)
 - This analysis 'includes' the ability of the tests for hazard ID
 - Strongest for the quantitative peptide reactivity

Table 1: R² coefficient for linear regression of logarithmic *in vitro* parameters vs. pEC3

		Set I: With KeratinoSens (n = 173)	Set II: with KeratinoSens and h- CLAT and DPRA (n = 154)
kDPRA	k _{max}	0.51	0.45
	EC1.5	0.29	0.27
KeratinoSens	EC3	0.35	0.35
	IC50	0.34	0.34
	EC150		0.28
L CLAT	EC200		0.16
h-CLAT	$MIT^{1)}$		0.36
	CV75		0.43
DDDA	kCys		0.33
DPRA	kLys		0.16

Quantitative contribution to potency assessment of individual tests

- Shown here **excluding the non-sensitizers** (EC3 < 30%):
 - Correlation is weaker as for all chemicals (hazard ID no longer included)
 - Strongest for the quantitative peptide reactivity
 - MIE may be key rate limiting step most strongly correlating to potency

R² coefficient for linear regression of logarithmic *in vitro* parameters vs. pEC3

		Set I: With KeratinoSens, EC3 <30% (n = 121)	Set II: with KeratinoSens and h- CLAT and DPRA, EC3 <30% (n = 107)
kDPRA	k _{max}	0.40	0.32
	EC1.5	0.13	0.11
KeratinoSens	EC3	0.17	0.16
	IC50	0.14	0.14
	EC150		0.17
–	EC200		0.04
h-CLAT	MIT ¹⁾		0.20
	CV75		0.21
DDD 4	kCys		0.19
DPRA	kLys		0.17

Combining datasources: Improved predictivity and data redundancy

- Combining data-inputs with multiple regression improves predictivity
- Combining peptide reactivity with one cellular test most predictive beyond there is data redundancy

R² coefficient for linear multiple regression of logarithmic in vitro parameters vs pEC3

	All chemicals	Clear sensitizers, EC3		
	(n = 154)	<30% (n = 107)		
k _{max}	0.45	0.32		
KS+k _{max}	0.57	0.38		
h-CLAT+k _{max}	0.59	0.40		
h-CLAT +KS+k _{max}	0.60	0.41		
h-CLAT +KS+DPRA	0.54	0.27		
h-CLAT +KS	0.51	0.27		

Cases study Givaudan: Deriving NESIL without animal testing

- All the input data are Log-transformed and normalized (set to zero if molecule is inactive)
- Multiple regression models used to predict pEC3
 - Logarithmic molar EC3 value
- This predicts a Likely LLNA EC3 as point of departure (PoD)

Natsch, A., Emter, R., Gfeller, H., Haupt, T., and Ellis, G. (2015). Toxicol. Sci. 143(2), 319-32.

Published also as OECD case study Nr. 7 in ENV/JM/MONO(2016)29/ANN1

Domain and global assessments

- Idea: Closely related chemicals acting by the same chemical reaction mechanism (=mechanistic domains) will behave similarly
 - a) In *in vitro* tests
 - b) In in vivo tests
- Thus a local / domain model ist trained with chemicals from one mechanistic domain
- Chemicals are ideally predicted with a local / domain model
- Chemicals which do not fall into a domain model will be predicted with a global model

Uncertainty assessment

- Search for closely related molecules with existing in vivo data in database with similar substructure for the putative reactive part of the molecule
- Perform same assessment (DA / DIP /IATA)
- Compare outcome to in vivo situation
 - This helps to assess uncertainty for the very specific subdomain of chemicals
 - Based on the uncertainty assessment, NESIL may be adjusted
- If uncertainty is low ⇒ Adjustment factor = 2
 - Note: NESIL is defined as a NOEL
 - LLNA is extrapolated between NOEL and LOEL 3-fold proliferation is already an 'effect'
- If uncertainty is high adjust based on uncertainty assessment

Application to derive NESIL: Case study Citral

 One infocard covers all steps for each molecule; same info card generated for each molecule to be assessed

Prediction by regression model

IATA: additional weight of evidence

Uncertainty analysis: Close analogues with DA / DIP results and in vivo data

WoE and conclusions

Case study Citral: Prediction by DA and IATA

- Local Michael acceptor model predicts EC3 of 6.8%
- Close to global model (EC3 = 5.2%)

_			F	Prediction by local model
	TIMES indicates MA cceptor, which is verifiby LC-MS based protei		Cys-depletion: 85.7 % Lys-depletion: 16.9 % Positive in high category	
Structure:	binding test		EC 1,5: 23 μΜ IC 50: 183 μΜ Positive	
TIMES parent:	Strong sensitizer, Disubstituted αβ-unsaturated aldehydes	liction global model:	EC3 5.2 %	
TIMES metabolite:	Weak sensitizer, hydroper Pred oxide	diction Local model:	EC3 6.8 %	
LC-MS:	Adduct: direct Michael Acceptor (MA) adduct tests 8.1%;		groups to test for Scl	ine diff Additional testing for
Domain attribution:	Peptide oxidation predominant Michael acceptor Result	Its mechanistic tests:	Low amine reactivity, loc	specific molecular classes
			with BA-test indicates lov tization potential (EC3 = 11.6 MA MoA confers stronger sensition potential, assess with MA n	5%); tiza-
	Confidential and propriet		el.	13

Case study Citral: Uncertainty assessment

- Related β -branched, $\alpha\beta$ -unsaturated aldehydes assessed
- Local MA models predicts EC3 within 2-fold error, on conservative side
- Indicates high certainty of the prediction for Citral

Close analogue:	Farnesal	O Safranal
Rationale for selecting close analogue:	, ,	Di-substituted αβ-unsaturated aldehydes
Prediction close analogue global model:	EC3 2.3%	EC3 1.7%
Prediction close analogue local model (MA):	EC3 6.9 %	EC3 3.4 %
<i>In vivo</i> results close analogue:	EC3 11.7 %	EC3 7.5 %
Prediction accuracy analogues:	Local model predicts with side	in 2-fold error; on conservative

Case study Citral: Conclusions

Weight of evidence assessment:

- Directly reactive Michael acceptor based on LC-MS
- EC3 = 6.8% from local Michael Acceptor model, moderate sensitizer, PoD: $1700 \mu g/cm^2$

<u>Uncertainty assessment based on close analogues</u>: Predictions with for close analogues indicate high certainty, predictions on conservative side. Use adjustment factor of 2

In vivo results:

- LLNA EC3 5.7% (weighted average 11 studies) = $1400 \mu g/cm^2$
- **Human: NOEL 1400 μg/cm²**, LOEL human 3870 μg/cm²

(NOEL = No observed effect level, LOEL lowest observed effect level)

Discussion: PoD derived from in vitro tests close to LLNA and human PoD, below human LOEL

With adjustment factor of 2: In vitro derived NESIL is 850 µg/cm²

Case studies: Molecules with high quality LLNA and human data

- Same assessment done on 15 fragrance molecules with human NOEL, LOEL and LLNA EC3
- The PoD (= predicted LLNA EC3) is compared to LLNA and human data
 - Overall good correlation of in vitro drived PoD with Human LOEL, PoD 0.29 Log units (=2-fold) below LOEL
 - Similar correlation between LLNA EC 3 and human LOEL

Case studies on new molecules: α -methyldamascone

a) Data, assessment with DIP and additional mechanistic tests

Name:	α-methyl-δ-damascone [(E)-2-methyl-1-((1S,2R)-2,6,6- trimethylcyclohex-3-en-1-yl)but-2-en-1- one]	DPRA:	Cys-depletion: 4.4 % Lys-depletion: 0.2 % Negative in minimal category, <0.1% peptide adduct
Structure:		KeratinoSens:	EC 1.5: >1000 μM IC50: 69.6 μM Negative
TIMES parent:	strong sensitizer, α,β-Carbonyl compounds with polarized double bonds	Prediction global model:	Better characterize reactivity of close damascone analogue.
TIMES metabolite:	strong sensitizer, αβ-Carbonyl compounds with polarized double bonds	Prediction Local model:	EC3 58
LC-MS:	Cor1C420 depletion: 6.8 %; Adduct: trace (< 0.5%) direct MA adduct	Additional mechanis- tic tests:	Kinetic profiling of adduct formation vs. benchmarks, see Figure 4 main document
Domain attribu- tion:	Michael acceptor	Results mechanistic tests:	4000-fold reduction in kinetic reaction rate vs. damascones

α-methyldamascone: Kinetic adduct formation

- Low reactivity cannot be accurately quantified based on depletion
- Additional test to quantify and verify low reactivity: Kinetic adduct formation

18

Case studies on new molecules: α-methyldamascone

a) Analysis of close analogues for uncertainty assessment

Close analogue:	O Methylionone	Delta-damascone		
Rationale for selecting close analogue:	α,β-Carbonyl compounds with polarized double bonds	α,β-Carbonyl compounds with polarized double bonds		
Prediction close analogue global model:	Negative, EC3 34.6% by cytotoxicity	EC3 1%		
Prediction close analogue local model (MA):	Negative, EC3 63.3 % by cytotoxicity	EC3 2.7 %		
In vivo results close analogue:	EC3 21.8 % HRIPT > 70'866 μg/cm ²	EC3: 9.6/0.9/5.2; Median 5.2% HRIPT LOEL 500 μg/cm ²		
Prediction accuracy analogues:	Good prediction with local model, esp. for	etion with local model, esp. for human data		

α-methyldamascone: IATA assessment and discussion

- Weight of evidence assessment:
 - Hazard assessment 2 out of 3: Negative (Negative KS and negative DPRA)
 - Very low residual reactivity observed by adduct formation
 - predicted very weak sensitizer, EC3 60%; PoD 15'000 μg/cm²
- <u>Uncertainty assessment based on close analogues</u>: Prediction with local model for close analogues indicate high certainty, esp. for human data
 - Note: Methylionone has equal cytotoxicity (IC50 = $58 \mu M$), highly similar structure
 - Methylionone is non-reactive and negative in human tests at high conc.; positive LLNA at EC3 21% could be due to irritation.
- In vivo results: Negative, EC3 >25%
 - LLNA performed after this prediction was made
- <u>Discussion</u>
 - In vivo data congruent with prediction and observation of very low reactivity
 - In vitro and in vivo data overrule the TIMES alert: TIMES sees 2D alerts, steric effects not taken into account!

Case studies: Two other new molecules, later challenged by LLNA

- Two molecules:
 - A) Crotonate: Predicted weak sensitizer, low direct reactivity observed
 - B) Oxime ether: Parent non sensitizer, weak sensitizer predicted due to metabolic activity

Table 3. Risk assessment for three new molecules without animal data – later challenged by LLNA ¹⁾

Chemical structure	TIMES prediction	KS result	Peptide reac- tivity	PoD IATA (μg/cm²)	Uncertainty assessment IATA PoD	Adjuste- ment fac- tor to derive NESIL	IATA derived NESIL (µg/cm²)	LLNA result 1)
2,6- dimethylcyclohexyl- crotonate	weak sensitizer, α,β-Carbonyl / polarized double bonds	negative	Cor1C420: 5% direct MA adduct; DPRA low category	EC3 30 – 40%; 11'000 μg/cm ²	low uncer- tainty	2	5500	Positive, EC3 21%; 5450 μg/cm ²
(E)-3-ethoxy-4-hydroxybenzaldehyde O-methyl oxime	Parent: Non- sensitizer Metabolite: Strong sensiti- zer, Quinoide oxime structure	negative	Cor1C420: 5.7 % depletion; no adduct; DPRA nega- tive	EC3 30 – 50 %, 7500 μg/cm ² .	High certain- ty for four tested ana- logues; Remaining uncertainty due to meta- bolic activa- tion	2	3750	Negative, EC3 >25%; >6250 μg/cm ²

¹⁾ Determined after IATA assessment was made

Case study: Oxime ether, potential prohapten

•Data, assessment with DIP and additional mechanistic tests

Name:	(E)-3-ethoxy-4- hydroxybenzaldehyde O- methyl oxime	DPRA:	Cys-depletion: 7.3 % Lys-depletion: 2.9 % Negative in minimal category, no adduct
Structure:	O-N OH	KeratinoSens:	EC 1.5: >1000 μM IC50: >1000 μM Negative
TIMES parent:	Non-sensitizer	Prediction global model:	Non-sensitizer; EC3 >100 %
TIMES metabolite:	Strong sensitizer; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinone	Prediction Local model:	
LC-MS:	Cor1C420 depletion: 5.7 % Adduct: no adduct	Additional mechanistic tests:	Test in presence of metabolic system (LC-MS and KS)
Domain attribution:	Quinone methide precursor	Results mechanistic tests:	Small trace of peptide adduct in presence of microsomes, positive in KeratinoSens with S9

Case study: Oxime ether, potential prohapten

•Analysis of close analogues for uncertainty assessment

Close analogue:	OH O Isoeugenol	OH O Eugenol	OH O Ethylvanillin	N OH Benzaldoxime
Rationale for selecting close analogue:	Quinone methide precursor	Quinone methide precursor	Substructure of target	Aromatic oxime; Substructure of target
Prediction close analogue global model:	EC3 1.6 %	EC3 14.1 %	EC3 41 %	EC3 29.8%
Prediction close analogue local model:	EC3 7.9 %	EC3 16.2 %	EC3 49 %; >100% model with BA-test	No model
In vivo results close analogue:	EC3 1.8 %	EC3 12.9 %	> 50%	> 20%
Prediction accuracy analogues:	Good prediction in case of isome	ion with local and global eugenol	model, better accur	acy for global model

Case study on new material: Risk assessment without LLNA

 New molecule predicted as sensitizer by TIMES, KeratinoSens, DPRA and LC-MS assay

a) Data	a) Data, assessment with DIP and additional mechanistic tests						
Name:	ethyl (Z)-2-acetyl-4-methyltridec-2-enoate	DPRA:	Cys-depletion: 27.8 % Lys-depletion: 1.3 % Positive in low category, ca. 6.6% direct adduct with Cys-peptide				
Structure:		KeratinoSens:	EC 1.5: 7.95 μM EC3 not reached due to cytotoxicity IC50: 13.2 μM Positive				
TIMES parent:	strong sensitizer, αβ-Carbonyl compounds with polarized double bonds	Prediction global model:	EC3: 5.1 %				
TIMES metabolite:	strong sensitizer, αβ-Carbonyl compounds with polarized double bonds	Prediction Local model:	EC3: 14 %				
LC-MS:	Cor1C420 depletion: 14 % Adduct: direct MA adduct Peptide oxidation predominant	Additional mechanistic tests:	Not needed				
Domain attribution:	Michael acceptor	Results mechanistic tests:	n/a				

Case study on new material: Risk assessment without LLNA

- Uncertainty assessment:
 - Related analogues: Michael acceptors with the double bond activated by two carbonyl groups
 - Well predicted by global and local model, here global model more accurate and on conservative side
 - Use global model for conservative assessment

a) Analysis of close analogues for uncertainty assessment					
Close analogue:	O O O Diethylmaleate	ethyl (Z)-2-acetyldec-2-enoate			
Rationale for selecting close analogue:	Double activated MA-ester	Double activated MA-ester, substructure of target			
Prediction close analogue global model:	EC3 1.4%	EC3 3%			
Prediction close analogue local model (MA):	EC3 3.8 %	EC3 5.6 %			
In vivo results close analogue:	EC3 2.1 %	EC3 2.6 %			
Prediction accuracy analogues:	Good prediction with local and global model, better accuracy for global model for these double activated MA-esters				

ethyl (Z)-2-acetyl-4-methyltridec-2-enoate: IATA assessment and discussion

Weight of evidence assessment:

- Hazard assessment 2 out of 3: Positive (Positive KS and positive DPRA)
- Directly reactive Michael acceptor
- Conservative assessment takes EC3 from global model
- EC3 = 5.1%; PoD 1250 µg/cm²
- Uncertainty assessment based on close analogues:
 - Prediction with global model for close analogues indicates high certainty
 - adjustment factor to derive NESIL = 2, since conservative assessment from global model taken

In vivo results:

- No LLNA planned, use NESIL from this assessment
- NESIL = $625 \mu g/cm^2$

kDPRA pending publication – Case studies and approach published in detail with lots of supporting information

TOXICOLOGICAL SCIENCES, 143(2), 2015, 319-332

doi: 10.1093/toxsci/kfu229

Advance Access Publication Date: October 22, 2014

Predicting Skin Sensitizer Potency Based on In Vitro Data from KeratinoSens and Kinetic Peptide Binding: Global Versus Domain-Based Assessment

Andreas Natsch*,1, Roger Emter*, Hans Gfeller*, Tina Haupt*, and Graham Ellis†

*Bioscience and Analytical Chemistry, (

[†]Regulatory Affairs and Product Safety,

TOXICOLOGICAL SCIENCES, 165(1), 2018, 170-185

doi: 10.1093/toxsci/kfy135 Advance Access Publication Date: June 1, 2018 Research Article

Deriving a No Expected Sensitization Induction Level for Fragrance Ingredients Without Animal Testing: An Integrated Approach Applied to Specific Case Studies

Andreas Natsch,*,1 Roger Emter,* Tina Haupt,* and Graham Ellis†

Conclusions

- Seven tests covering three key events in skin sensitization AOP are in OECD guidelines
- Defined approaches allow hazard ID
- Individual tests parameters correlated to LLNA potency
- Potency assessment possible based on integration of data
- Taking chemical domain into account improves predictivity
- Read-across anchored by in vitro and in vivo data helps for uncertainty assessment
- Deriving a NESIL for risk assessment without animal testing has become possible

Thank you

Contact