RIFM's in vitro research for dermal sensitization quantitative risk assessment

Isabelle Lee

One area of RIFM's research focus is determining quantitative potency for dermal quantitative risk assessment

FRAGRANCE MATERIALS

The NESIL, currently confirmed through human testing, is the starting point for QRA2

Human data alone may not be sufficient to determine a material's quantitative potency

NOEL from human tests can be close to or far from the threshold dose that induces skin sensitization.

RIFM has a developed reference database of fragrance ingredients for NAM testing

~ 100 fragrance materials

Research article by **RIFM**: Na et al., 2022

These reference fragrance ingredients comprise a wide range of sensitization potency categories

Reactivity alerts show the distribution of fragrance ingredient chemical domains represented

Point of departure (PoD) assessment using the integrated OECD *in vitro* models

Regression models integrating *in vitro* **methods to derive points of departure for QRA have been published**

Regression Model	EC3 (LLNA)	PV (Human)
KS + kDPRA	Equation 1	Equation 1d
kDPRA + h-CLAT	Equation 4	Equation 4d
KS + kDPRA + h-CLAT	Equation 5	Equation 5d
KS (EC1.5) + h-CLAT	Equation 6	Equation 6d
KS (EC3) + h-CLAT/ KS + kDPRA + h-CLAT	Equation 7	Equation 5e

Method developed by Givaudan: Natsch et al., 2022 & 2023

Human potency values (PVs) and LLNA EC3 have been predicted for ~ 60 fragrance ingredients

Regression Model	EC3	PV
KS + kDPRA	1.02	0.78
kDPRA + h-CLAT	0.81	0.67
KS + kDPRA + h-CLAT	0.80	0.56
KS (EC1.5) + h-CLAT	1.11	0.78
KS (EC3) + h-CLAT/ KS + kDPRA + h-CLAT	0.92	0.64

Research article by **RIFM**: Lee et al., 2024

Predicted PV match WoE categories with high accuracy: Equation 5d (KS + kDPRA + h-CLAT)

	WoE \downarrow /Equation 5d \rightarrow	Extreme	Strong	Moderate	Weak	Very Weak	NS		
	Extreme	0	0	0	0	0	0		
	Strong	0	5	0	1	0	0		
	Moderate	0	2	3	7	1	0		
	Weak	0	0	9	19	2	0		
	Very Weak	0	0	4	10	7	0		
	NS	0	0	0	1	3	0	Equation 5d prediction more conservative	Equation 5d prediction less conservative
·				E	Equation 5d predic WoE Potenc	ction matched the y Category	45.95%		
				с	Equation 5d pro ategory off from t	ediction was 1 he WoE category.	44.59%	72.73%	27.27%
ARCH I	FM [®] NSTITUTE FOR MATERIALS				Equation 5d pred more categories Categ	diction was 2 or s off from WoE gory.	9.46%	71.43%	28.57%

RESE/

The median fold misprediction for predicted PV vs human NOEL is between 1.7 and 3.4

Absolute fold misprediction

Conclusions

- 1. Distribution of predicted potency categories is similar to WoE categories; no extreme sensitizer category predicted
- 2. Both EC3 and PV equations provide good approximations of WoE potency categories
- 3. Equation 1 and 1d provide the highest prediction accuracy for WoE categories
- 4. Median fold misprediction for human potency values is between 1.7 and 3.4 for the 5 equations
- 5. Median fold misprediction for EC3 is between 1.8 and 2.5 for the 5 equations

Research article by **RIFM**: Lee et al., 2024

Point of departure assessment using the GARDSKin Dose response (DR) assay

Overview of the GARDskin DR assay

Step 1

Step 2

Step 3

(15)

GARDskin DR predicts hazard for 100 fragrance ingredients with an accuracy of 81%

		GARDskin DR Prediction		
		Negative	Positive	
Reference Data	Negative	6	5	
	Positive	14	75	

Statistics			
Accuracy	0.81		
Sensitivity	0.84		
Specificity	0.55		
Balanced accuracy	0.69		
Positive Predictive Value (PPV)	0.94		
Negative Predictive Values (NPV	0.30		

GARDskin DR predicts NESILs with an approximate accuracy of 81% for the reference potency categories

Total accuracy (%)	37.0	37/100
Approximate accuracy (%)	81.0	81/100
Fraction overclassified (%)	34.0	34/100
Fraction underclassified (%)	29.0	29/100
Accuracy [Extreme] (%)	NA	0/0
Approximate accuracy [Extreme] (%)	NA	0/0
Accuracy [Strong] (%)	80.0	4/5
Approximate accuracy [Strong] (%)	80.0	4/5
Accuracy [Moderate] (%)	41.2	7/17
Approximate accuracy [Moderate] (%)	76.5	13/17
Accuracy [Weak] (%)	41.0	16/39
Approximate accuracy [Weak] (%)	87.2	34/39
Accuracy [Very weak] (%)	14.3	4/28
Approximate accuracy [Very weak] (%)	78.6	22/28
Accuracy [NC] (%)	54.5	6/11
Approximate accuracy [NC] (%)	72.7	8/11

Total accuracy and approximate accuracy increase when weak and very weak categories are combined

Total accuracy (%)	53.0	53/100
Approximate accuracy (%)	98.0	98/100
Fraction overclassified (%)	24.0	24/100
Fraction underclassified (%)	23.0	23/100
Accuracy [Extreme] (%)	NA	0/0
Approximate accuracy [Extreme] (%)	NA	0/0
Accuracy [Strong] (%)	80.0	4/5
Approximate accuracy [Strong] (%)	80.0	4/5
Accuracy [Moderate] (%)	41.2	7/17
Approximate accuracy [Moderate] (%)	94.1	16/17
Accuracy [Weak] (%)	53.7	36/67
Approximate accuracy [Weak] (%)	100	67/67
Accuracy [NC] (%)	54.5	6/11
Approximate accuracy [NC] (%)	100	11/11

The median fold misprediction for GARDskin DR predicted NESIL was 2.5 for reference materials with defined LOEL and NOEL

Groups:	GARDskin Dose Response
Sample size (n):	23
Minimum:	1.0087
Lower boundary:	-6.0371
Q1:	1.422
Median:	2.3941
Q3:	6.3947
Upper boundary:	13.8539
Maximum:	12.2751
IQR	4.9728
Mean (x̄):	4.1739

RIFM® RESEARCH INSTITUTE FOR FRAGRANCE MATERIALS

GARDskin Dose Response

Conclusions

- **1. GARDskin DR predicted human NOELs correlated well with reference NOELs, with a Pearson correlation of 0.73.**
- 2. Predicted NOEL and LLNA EC3 values from replicate measurements were highly reproducible
- **3.** The composite potency score was designed to account for main shared variance between predicted NOEL and EC3
- 4. An approximate accuracy of 81% was observed and mispredictions were mostly overclassified.
- 5. The approximate accuracy increased to 98% when the weak and very weak categories were combined

Research article by RIFM: Under peer review

Absolute fold mispredictions between predicted quantitative potencies are generally similar between the 2 models

Groups:	GARDskin Dose Response	Regression Model Eq 5d
Sample size (n):	78	57
Minimum:	1.0087	1.0044
Lower boundary:	-4.8163	-3.6209
Q1:	1.4266	1.6965
Median:	2.5391	2.6314
Q3:	5.5885	5.2414
Upper boundary:	11.8314	10.5588
Maximum:	116.1639	37.997
IQR	4.1619	3.5449
Mean (x):	6.6344	5.0614

Regression Model Eq 5d

FRAGRANCE MATERIALS

QRA2 remains critical as we incorporate NAMs in next generation risk assessment (NGRA) of fragrance ingredients

Defining uncertainty

Current framework for NGRA of fragrance sensitizers with incorporation of QRA2

RIFM continues assess and integrate NAMs into our safety assessments through global collaboration

Isabelle Lee, PhD ilee@rifm.org

Maura Lavelle, MS mlavelle@rifm.org

Isabella Schember, PhD ischember@rifm.org

Thank you!

Contact our team for more information, comments, and questions.

