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In vivo data

Databases of curated in vivo reference data

• The OECD prepared a curated reference data set 
(https://one.oecd.org/document/ENV/CBC/MONO(2021)11/en/pdf ) on

• A) Local lymph node assay data (n = 194)
• B) Human reference data (n = 66)

• We have an extended the set to 213 chemicals with LLNA and in vitro data

• The IFRA IDEA project proposed a workflow to combine human and animal data to derive 
“potency values” and applied it to a list of chemicals (n = 33) 
(https://www.sciencedirect.com/science/article/pii/S0273230022001313 )

• We extended the list with PV values (n = 139 chemicals)* 
https://www.altex.org/index.php/altex/article/view/2617

•

     * independent of recent RCPL extension

https://one.oecd.org/document/ENV/CBC/MONO(2021)11/en/pdf
https://www.sciencedirect.com/science/article/pii/S0273230022001313
https://www.altex.org/index.php/altex/article/view/2617
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In vitro data

Databases of curated in vitro reference data

• Several institutions generated and collected in vitro data for the chemicals in the in vivo 
reference databases, mainly:
• Kao and Shisheido (mainly h-Clat and DPRA)
• Givaudan (KeratinoSens and kDPRA)
• BASF (mainly kDPRA and U-Sens)
• Procter and Gamble (Mainly DPRA)
• Research institute for fragrance Materials (RIFM; all endpoints)  

• With these large set of in vitro data AND in vivo reference data , it is possible to perform 
quantitative modeling

• While these data collection effort were first targeted at qualitative hazard identification, 
most of  these in vitro assay also provide quantitative dose-response data
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In vitro data

Input data: Quantitative data in KeratinoSens, h-CLAT and kDPRA

• KeratinoSens
EC1.5 –Dose for 1.5-fold induction 
EC3 - Dose for 3-fold Luciferase induction
IC50 for 50% reduction in cell viability

• hClat
EC150 – dose for 1.5-fold induction of CD86
EC200 – dose for 2-fold induction of CD54
MIT minimum of EC150 and EC200
CV75 for 25% reduction in cell viability 

• Kinetic DPRA 
Kinetic rate for Cys-peptide depletion

KeratinoSens
Example

kDPRA
Example

D. Roberts, A. Natsch, Chem Res. Toxicol. 2009, 22,592-603. 
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Regression 
Model

The combined in vitro / in vivo Databases used for the Regression model

Dataset with LLNA, KeratinoSens and kDPRA: n = 203

Dataset with LLNA, KeratinoSens, h-CLAT and kDPRA: n = 188

Dataset with OECD curated LLNA data, KeratinoSens, h-CLAT and kDPRA: n = 149

Dataset with Potency values (PV) and KeratinoSens, h-CLAT and kDPRA: n = 139

✓ All data are log transformed and normalized
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Regression 
Model

Regression models 

Key input parameters for the equation(s) in the Regression Model :

• KS Log EC1.5norm
• KS Log IC50norm  
• h-CLAT Log MITnorm  
• h-CLAT Log CV75norm  
• kDPRA Log kmax  
• Physchem: Log VP norm 

Four different models can be applied using the ‘2 out of 3 approach’:
• EQ1: Combining KeratinoSens with kDPRA
• EQ4: Combining h-CLAT with kDPRA
• EQ6: Combining KeratinoSens and h-CLAT
• EQ5: All evidence: Combining KeratinoSens AND h-CLAT with kDPRA

Models were trained on:
a) LLNA EC3 values
b) Potency values

EQ 1: pEC3 = 0.42 + 0.40 × Log kmax + 0.15 × Log EC1.5norm + 0.36 × Log IC50norm - 0.21 × Log VPnorm

Peptide reactivity KeratinoSens Volatility

EQ 4: pEC3 = 0.18 + 0.36 × Log knorm + 0.21 × Log MITnorm + 0.35 × Log CV75norm  - 0.19 × Log VPnorm

Peptide reactivity H-CLAT Volatility

Can be used for partial 
evidence
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Regression 
model

Regression model: Spreadsheet - Application in practice

Prediction in Practice

KeratinoSens 
Assay Result

kDPRA
Assay Result

h-CLAT
Assay Result

• The key benefit of regression models is 
simplicity and transparency

• Using the equations from the previous slide 
the results can be calculated directly – no 
proprietary software or hidden algorithm

• For ease of application a public 
spreadsheet can be used

• Just enter the test results from the study 
report and voilà...

Chemical
Identification

PoD
Prediction

https://www.altex.org/index.php/altex/article/view/2617

https://www.altex.org/index.php/altex/article/view/2617

https://www.altex.org/index.php/altex/article/view/2617


Automated model choice in a Defined Approach

2 tests
positive –

third test not 
done

Apply equations
EQ1/EQ1d: KS + kDPRA

EQ4/EQ4d: h-CLAT + kDPRA
EQ6/EQ6d: KS + h-CLAT 

Take the lower of the two
models (EC3 or PV model) as

final value

All three tests
performed

Apply equations
EQ5/EQ5e

Take the lower of the two
models (EC3 or PV model) as

final value

This approach is coded into the Excel-Spreadsheet, so that, depending on the available data, one final value will 
automatically be generated (i.e. it is a DEFINED APPROACH (DA).

The Regression approach makes multiple predictions – based on 
a) the training dataset (LLNA EC3 or potency values (PV)) and 
b) based on input data (all tests, partial evidence)

For OECD approval – the approach selects one outcome based on the input data:
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Prediction

Regression model: Predictivity

Overall predictivity vs. LLNA EC3 data

• All chemicals with all three tests available

• Compared versus OECD MLLP LLNA EC3 

data or other LLNA data according [1] in 

case no OECD MLLP EC3 is available

• Grey dashed line: line of identity

• Grey area – area of less than 10-fold 

misprediction
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Prediction

Regression model: Predictivity for case studies

• Chemicals with at least 5 LLNA studies in 
OECD DB as case studies

• For these the certainty of the LLNA value is 
high

• Overall accurate prediction of these 
chemicals with strong in vivo evidence. 
Mostly within variability of the LLNA studies

• Similar predictivity with different models

• Flexibility which model to apply

        Predicted EC3 

 

 LLNA EC3 1)  LLNA studies (n)  LLNA EC3 range  EQ1  EQ4  EQ5  

Aniline NC 14 13.25 - (> 100) 60 52 57 

Penicillin G 31.3 8 11.2 - 46.5 >100 >100 >100 

Hydroxycitronellal 21.1 8 18.8 - 33 18.7 11.3 10.9 

Geraniol 16.1 6 5.6 - 57 18.3 14.3 14.2 

Eugenol 11.6 16 3.8 - 16.6 19.9 6.8 10.4 

alpha-hexyl cinnamic aldehyde 10.8 29 1.2 - 33.8 5.9 (25) 17.4 

Lilial 8.6 5 3 - 18.6 20.5 9.3 12.5 

Citral 5.8 16 1.5 - 26.8 9.4 5.0 4.8 

Formaldehyde 3.8 15 0.35 - 14.5 1.5 0.8 1.0 

3- dimethylaminopropylamine 3.5 7 1.8 - (>10) 40 37 32 

Isoeugenol 1.3 31 0.5 - 6.4 1.8 (4.6) 4.2 

Cinnamic aldehyde 1 12 0.5 - 3.1 1.0 0.8 0.8 

Hydroquinone 0.19 20 0.07 - 1.67 0.9 0.4 0.4 

PPD 0.11 10 0.06 - 0.2 3.5 1.9 1.7 

DNCB 0.054 20 0.012 - 0.096 0.18 0.19 0.17 

Kathon CG 0.008 10 0.005 - 0.063 0.05 0.05 0.05 

Oxazolone 0.002 7 0.001 - 0. 003 1.5 0.5 0.7 
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• The data on predictivity and case studies show that 
• Similar predictions for individual chemicals with EQ1, EQ4 and EQ5
• The overall fold-misprediction is quite similar by different models

• Further illustrated by individual predictions for chemicals positive in three tests

Regression model: Robustness and redundancy

• This indicates data-redundancy

• Partial evidence is sufficient

• Having a third positive tests often 
does not change the assessment

Al
l t

hr
ee

te
sts

KS + kDPRA H-CLAT+ kDPRA



Conclusions

• All the key event-based test guidelines (except classical GARD in TG) deliver – next to hazard identification – dose-response 
data which contribute to potency prediction

• Regression models are a facile and transparent way to integrate these data to derive a Point-of-Departure for quantitative risk 
assessment (QRA2)

• Already with these three tests there is data redundancy, and two tests often give very similar predictions to three tests
• This may indicate we are in a ‘as good as it can get’ situation for the prediction model

• The simple public spreadsheet makes application of the regression model straightforward

• These are in vitro-only Defined Approach –in vitro data directly leads to the PoD*

• ‘2 out of 3’ DA (TG497) combined with kDPRA (TG442D) give
• Hazard ID
• GHS potency class
• PoD from the same data! No additional testing!

*DA does not yet include in silico evaluation, structural alert and read-across. These additional lines of evidence can then be used to refine the assessment and assess uncertainty (they 
are not ‘used up’ in the DA)



Publications

https://pubmed.ncbi.nlm.nih.gov/35404469/

The work presented here is the summary 
of three publications in 2022 and 2023

https://pubmed.ncbi.nlm.nih.gov/37074977/

https://pubmed.ncbi.nlm.nih.gov/35404469/

https://pubmed.ncbi.nlm.nih.gov/35404468/
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